Choosability and fractional chromatic numbers

نویسندگان

  • Noga Alon
  • Zsolt Tuza
  • Margit Voigt
چکیده

A graph G is (a, b)-choosable if for any assignment of a list of a colors to each of its vertices there is a subset of b colors of each list so that subsets corresponding to adjacent vertices are disjoint. It is shown that for every graph G, the minimum ratio a/b where a, b range over all pairs of integers for which G is (a, b)-choosable is equal to the fractional chromatic number of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular choosability is rational

The circular choosability or circular list chromatic number of a graph is a list-version of the circular chromatic number, introduced by Mohar [4] and studied in [17, 2, 5, 7, 8, 15] and [10]. One of the nice properties that the circular chromatic number enjoys is that it is a rational number for all finite graphs G (see for instance [16]), and a fundamental question, posed by Zhu [17] and reit...

متن کامل

Distance Graphs and T-Coloring

We discuss relationships among T-colorings of graphs and chromatic numbers, fractional chromatic numbers, and circular chromatic numbers of distance graphs. We first prove that for any finite integral set T that contains 0, the asymptotic T-coloring ratio R(T ) is equal to the fractional chromatic number of the distance graph G(Z, D), where D=T&[0]. This fact is then used to study the distance ...

متن کامل

Total choosability of multicircuits II

A multicircuit is a multigraph whose underlying simple graph is a circuit (a connected 2-regular graph). In this paper, the method of Alon and Tarsi is used to prove that all multicircuits of even order, and some regular and near-regular multicircuits of odd order have total choosability (i.e., list total chromatic number) equal to their ordinary total chromatic number. This completes the proof...

متن کامل

Total choosability of multicircuits I

A multicircuit is a multigraph whose underlying simple graph is a circuit (a connected 2-regular graph). In this pair of papers, it is proved that every multicircuit C has total choosability (i.e., list total chromatic number) ch00(C ) equal to its ordinary total chromatic number 00(C ). In the present paper, the kernel method is used to prove this for every multicircuit that

متن کامل

On two questions about circular choosability

We answer two questions of Zhu on circular choosability of graphs. We show that the circular list chromatic number of an even cycle is equal to 2 and give an example of a graph for which the infimum in the definition of the circular list chromatic number is not attained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 165-166  شماره 

صفحات  -

تاریخ انتشار 1997